
Journal of Computational Physics149,95–113 (1999)

Article ID jcph.1998.6140, available online at http://www.idealibrary.com on

A Method for Estimating the Computational
Requirements of DSMC Simulations1

Marc A. Rieffel

Scalable Concurrent Programming Laboratory, Computer Science Department,
Syracuse University, Syracuse, New York 13210

E-mail: marc@scp.syr.edu

Received February 4, 1998; revised October 13, 1998

This paper presents a model for predicting the runtime and storage requirements for
direct simulation Monte Carlo (DSMC) simulations of rarefied gas flow. A variety of
flow configurations are considered, including internal, external, steady, and unsteady.
The analysis is independent of the simulation architecture, gridding technique, col-
lision model, and implementation technique. The model is validated and constants
of the model determined for simple test cases. The model is then used to predict the
requirements of a realistic three-dimensional simulation, and the results are shown to
agree with experiments. Additional predictions define the boundaries of simulations
that are feasible with existing computational resources.c© 1999 Academic Press

1. INTRODUCTION

A variety of simulation techniques are used for the simulation of fluid flow, or gas dy-
namics. The characteristic parameter that determines gas flow properties is the Knudsen
number,Kn= λ/L, whereλ is the mean free path in a gas andL is the reference flow
scale. In thecontinuum regime, where the Knudsen number tends toward zero, microscopic
structure can be ignored, and a system can be completely described in terms of macroscopic
parameters such as density, temperature, and velocity. In thefree-molecular regime, where
the Knudsen number tends toward infinity, collisions between molecules can be neglected,
and the flow behavior is controlled by interactions between molecules and boundary sur-
faces. The region between the continuum and free-molecular regimes, where the Knudsen
number is close to unity, is called thetransition regime.

1 Infrastructure, support, and computing resources for this research were provided by BMDO under Contract
DAAH04-96-1-0319. The research described in this report is sponsored by Intel Corporation and the Advanced
Research Projects Agency under Contract DABT63-95-C-0116. This work includes Russian participation that is
supported by the U.S. Civilian Research and Development Foundation under Award RE1241.

95

0021-9991/99 $30.00
Copyright c© 1999 by Academic Press

All rights of reproduction in any form reserved.

96 MARC A. RIEFFEL

In the transition regime, viscosity, heat conduction, relaxation, diffusion, and chemical
processes are important, and it is also possible for velocity distribution functions to be non-
Maxwellian, resulting in strong thermal nonequilibrium. As thermal and chemical relaxation
lengths may be comparable to the reference flow scale, differences between translational,
rotational, and vibrational temperatures may be important.

Several numerical techniques for simulating transitional gas flow have been developed
in the past 20 years. Navier–Stokes and viscous shock layer equations can typically be used
for the simulation of near-continuum flows, with appropriate extensions for modeling slip
velocity and temperature jumps at surfaces. Because the Navier–Stokes equations assume
only small deviations from thermal equilibrium, however, they are not suitable for studying
rarefied flows with flow disturbances, such as shock waves, in which the velocity distribution
functions are strongly nonequilibrium.

The governing equation in the transition regime is the Boltzmann equation, a detailed
treatment of which can be found in [11, 12, or 21]. It is a nonlinear integral–differential
equation, closed with respect to the one-particle distribution function, which in turn deter-
mines the density of particles in a six-dimensional phase space of particle coordinates and
velocities.

Some approaches for solving the Boltzmann equation include direct integration, molec-
ular dynamics methods, the direct simulation Monte Carlo (DSMC) method, techniques
coupling both DSMC and continuum methods [8], model equation approaches [31], and
the test particle method [14]. The DSMC method is the approach of choice for the study
of complex multidimensional flows of rarefied hypersonic aerothermodynamics. Reasons
for this include the simple transition from one-dimensional to two- and three-dimensional
problems, and the ease with which complex models of particle interaction can be incorpo-
rated without substantial increase in computational costs [18]. It is also well suited for use
on modern concurrent architectures [28].

Systems that the DSMC method can be used to simulate include space vehicles in the
upper atmosphere [6, 16, 17], plasma reactors for semiconductor manufacturing [2, 29, 33],
lava flow from volcanoes [1], and many others.

The DSMC method was pioneered by Bird [4, 5, 7]. It can be used to model chemical
reactions and has been extended to address translational and rotational effects in gaseous
expansions [3] and to include the maximum entropy (ME) and Borgnakke–Larsen variants
(BL) [23]. Sophisticated models have been developed for energy transfer between vibra-
tional and translational modes, such as those used in simulating flow over a two-dimensional
wedge [9]. Chemical reaction models have been used to model reacting flows [6]. DSMC
has also been combined with fluid electron models and self-consistent electric fields to
simulate plasma systems [2, 26].

In principle, the DSMC technique can account for all of the physics needed for any
problem [24]. It is, therefore, a pure form of computational fluid dynamics. In practice,
however, the technique can be substantially more computationally intensive than contin-
uum approaches. The goal of the present work is to study the computational cost of DSMC
simulations, in terms of the physical parameters of the systems that are being modeled, such
as density, temperature, and velocity. Predictive models for simulation time and storage re-
quirements are developed. These models are independent of the simulation architecture,
gridding technique, collision model, and implementation technique. The models are devel-
oped for three-dimensional simulations, but they can also be generalized ton-dimensional
simulations [30].

REQUIREMENTS FOR DSMC SIMULATIONS 97

The applications of these models are threefold. First, for existing DSMC applications,
they facilitate the understanding of how changes in simulation parameters affect changes
in computational requirements. Second, they may be useful in comparing DSMC to other
techniques for a given problem. Finally, they provide a straightforward method for de-
termining whether a desired simulation is feasible, given available time, processing, and
memory constraints.

2. NUMERICAL METHOD

The direct simulation Monte Carlo method is an approach for solving the Boltzmann
equation by simulating the behavior of individual particles. Since it is impossible to simulate
the actual number of particles in a realistic system, a smaller number of simulation particles
are used, each representing a large number of real particles. A computational grid is used to
represent the simulated region. Statistical techniques are employed to reproduce the correct
macroscopic behavior. Figure 1 shows a schematic of simulated particles and grid cells in a
DSMC computation. In three dimensions, cubic, hexahedral, tetrahedral, or prismatic cells
may be used, depending on the implementation and specific simulation requirements.

The DSMC algorithm is shown in Fig. 2. Initially, grid cells are filled with simulation
particles according to density, temperature, and velocity specifications. A simulation then
takes discrete steps in time. Particle motion and interactions are decoupled over the duration
of a timestep. Each timestep is composed of two phases,transport, where particles move
between grid cells, andcollisions, where particles interact within a cell. Macroscopic prop-
erties, such as density and temperature, are computed by appropriate averaging of particle
properties.

The transport phase, concerned with moving particles through the computational grid
for a specified period of time, may be implemented in several ways. For simple Cartesian
grids, particle destinations are quickly computed, and particle cell destinations are computed
using indexing schemes [15]. For more complex grids, such as hexahedral or tetrahedral,
ray-tracing techniques can be used to determine particle positions in space and in the grid at
the end of a timestep [28]. Interactions between particles and boundary surfaces may also
take place during the transport phase.

FIG. 1. Cells and particles in a DSMC simulation.

98 MARC A. RIEFFEL

1. Initialize cells according to initial conditions

2. While more steps are necessary

(a) Move particles(Transport phase)

(b) Collide particles(Collision phase)

(c) Compute global information,

such as the total number of simulated particles

3. Compute results from cell and particle information

4. Conclude computation

FIG . 2. The DSMC algorithm.

The collision phase implements particle–particle interactions. Cell sizes are chosen so
that only collisions between particles in the same cell must be considered. The number of
collisions that take place in a cell is a function of the number of particles in the cell and
the volume of the cell, as well as model-specific parameters, such as the particle mass and
collision cross section.

While the DSMC algorithm appears simple, its complexity can only be determined from
careful consideration of computational and physical parameters. The primary constraints
on the DSMC method are: (1) the cell size must be proportional to the local mean free
path; (2) the number of particles per cell must be roughly constant in order to preserve
collision statistics; and (3) the simulation timestep must be chosen so that particles only
traverse a fraction of the average cell length per timestep [7]. The following sections study
the implications of these constraints and present models for the run time and memory
requirements of DSMC simulations.

Several classes of simulations must be considered when evaluating computational re-
quirements. Simulations can be either steady state or unsteady and can be for either internal
or external flows. The computational requirements of unsteady simulations are different
from, and may be much greater than, those of steady simulations. Internal flow simula-
tions typically use simulation volumes that are specified by the physical geometry of the
problem, while external flows use simulation volumes determined by flow properties. The
performance implications of these different classes of simulations are discussed below.

3. COMPUTATIONAL COMPLEXITY ANALYSIS

The important physical parameters for a simulation depend on the type of simulation.
Internal-flow systems, such as plasma reactors, are typically characterized by the particle
density, the simulated volume, and the collision cross section. Together, the particle density
and collision cross section determine the mean-free path and therefore the required size of
computational grid cells, while the simulated volume determines the number of cells that are
required and the time taken for information to travel across the system. For certain external-
flow systems, however, the effects of these parameters are different. For simulations of
unsteady flows, it is also important to consider the time during which the system must be
simulated, as well as the characteristic oscillation time of the system.

Simulation Parameters

In order to predict the performance cost of the collision and transport phases of a DSMC
computation, it is useful to calculate some general system parameters, such as the required

REQUIREMENTS FOR DSMC SIMULATIONS 99

number of cellsC, the simulation timestep1t , and the total number of required timesteps,S.
The number of cells required for a simulation can be determined from the DSMC constraint
that the typical cell size, or characteristic cell length,l̄ be proportional to the mean free
pathλ,

l̄ = cλλ = cλ
nσ
, (1)

wherecλ is a proportionality constant,n is the particle number density (particles per unit
volume), andσ is the collision cross section. The cell size is also typically proportional to
the cube root of the average cell volume,

l̄ = cv(V/C)
1/3, (2)

wherecv is a constant that reflects the type of grid and the skewness of grid cells. Combining
Eqs. (1) and (2) and solving for the number of cellsC yields

C =
(

c3
v

c3
λ

)
n3σ 3V. (3)

The number of particles required by a simulation,N, is chosen to be proportional to the
number of cells required,N= cpC. The number of particles per cell,cp, must be large
enough to allow for a sufficient number of collisions per cell and to provide adequate
samples for statistics, as discussed below. Using the value ofC from (3) gives

N = cpC = cp

(
c3
v

c3
λ

)
n3σ 3V. (4)

A typical simulated system may contain a number of particles comparable to Avogadro’s
number. As it is computationally infeasible to simulate this number of particles, it is nec-
essary for each simulated particle to represent a large number of real particles. Theweight
of each simulated particle, or the number of real particles represented by each simulated
particle,wp, can be written as the ratio of real to simulated particles, which can in turn be
written in terms of the number of cells, using Eqs. (3) and (4),

wp = nV

cpC
= c3

λ

cpc3
v

(
1

n2σ 3

)
. (5)

The total amount of simulation time required for a steady-state simulation to converge
depends on the geometry of the system and the thermochemical properties of the gases
being simulated. For the purposes of a performance model, however, the convergence time
may be based on the acoustic time, the amount of time that it takes for thermal information
to traverse the entire width of the simulated region,L. The quantityL can be approximated
as proportional to the cube root of the simulated volume,L = cL V1/3, where the constant
cL reflects the shape of the simulated region. A long, narrow volume will have a highercL

than a spherical volume.
The thermal speedvt for a single-species gas can be computed by,vt =

√
8kT/πm, where

k is the Boltzmann constant,T is the gas temperature, andm is the particle mass. Information

100 MARC A. RIEFFEL

propagates fastest in high-temperature, low-mass gases. Assuming thatca acoustic periods
are required for convergence, the acoustic, or convergence timeTconv, is given by

Tconv= cLca
V1/3

vt
. (6)

The simulation timestep1t should be chosen so that the average distance traveled by
a particle in a timestep,d, is some fraction,ct , of the average cell length,̄l . If particles
traverse too many cells in one timestep, results may be inaccurate. On the other hand, too
small a timestep will result in inefficient computation. The average distance traveled by a
particle in a timestep can be estimated as the product of the timestep1t and the sum of
stream and thermal velocities, ¯v+ vt . Using these approximations, with (6) and (3), yields

1t = ct
l

vtotal
= ctcV

(V/C)1/3

v̄ + vt
, (7)

Using the value ofC from (3), this can be rewritten

1t = ctcλ
(v̄ + vt)nσ

. (8)

It is important to note that an increase in any of the parameters,n, σ, T , or v̄, results in a
decrease in the timestep duration. This in turn results in an increase in the number of steps
required for a simulation and, therefore, the simulation time. The number of steps required
for convergence,Sconv, is the ratio of the acoustic timeTconv to the timestep1t . Using (8),

Sconv= Tconv

1t
= cLca

ctcλ

(
1+ v̄

vt

)
nσV1/3. (9)

In addition to considering the time required for a simulation to converge, it is also
important to examine the trade-off between execution time, memory usage, and solution
quality. One measure of the quality of a solution is determined by the noise, or statistical
scatter. The statistical scatter is determined by the number ofsamples, or the product of the
average number of particles in a cell,cp, and the number of steps over which macroscopic
properties are averaged,Ss. Assuming that the scatter follows a Poisson distribution, the
fractional error,e, is inversely proportional to the square root of the number of samples,
Ns [7],

e= 1√
Ns
= 1√

cpSs
. (10)

In order to obtainr samples per cell, it is necessary to average results overr/cp steps.
In the following sections, these parameters are used to compute the amount of time

required for the transport and collision phases of a DSMC timestep.

Transport Phase

The time required for the transport phase of a timestep is given by the product of time
required to move one particle,Tt , and the number of particles,N,

Ttrans= Tt N = TtcpC. (11)

REQUIREMENTS FOR DSMC SIMULATIONS 101

The parameterTt is dependent upon both the machine speed and the implementation of the
transport model. Using the value forN computed in (4),Ttranscan be written

Ttrans= Tt N = Tt
cpc3

v

c3
λ

n3σ 3V. (12)

Collision Phase

The time required to compute collisions in a DSMC timestep is proportional to the number
of collisions. Consider a computational cell of volumeVcell that containscp particles. Using
the hard sphere (HS) collision model, the number of collisions in that cell during a given
timestep1t is given by,

Nc = cp(cp − 1)σvrwp

2Vcell
1t, (13)

whereσ is the collision cross section andvr is the relative velocity between particles. For
a single-species gas, the mean relative velocity is given by the equationvr =

√
16kT/πm,

and can therefore be written in terms of the mean thermal velocity,vr = vt

√
2. Using the

timestep duration1t from (8) and the particle weight computed in (5), as well as the
approximation,Vcell=V/C, yields

Nc = (cp − 1)ctcλ√
2

(
vt

v̄ + vt

)
. (14)

The total time spent on collisions is one timestep is then the product of the time spent
on each collision,Tc, the number of collisions per cell,Nc, and the number of cells,C.
Combining (14) and (3) yields

Tcol = TcNcC = Tc
(cp − 1)ctc3

v√
2c2
λ

(
vt

v̄ + vt

)
n3σ 3V. (15)

As with transport, timestep collision time is proportional to the cube of both density and
cross section, and to the first power of the domain volume. This analysis was developed for
the HS model, whereσ is a constant. For the VHS model,σ is a function of relative velocity.
Thorough analysis of the cost of the variable hard sphere (VHS) model could be completed
with integration over relative velocities. The result, however, would have roughly the same
dependence onσ 3. The extension to the variable soft sphere (VSS) model does not affect
the number of collisions, only the postcollision scattering angle. Because more computation
is required with each collision, this would have the effect of increasingTc, but it would not
change the dependence on the other parameters,n, σ , andV .

Timestep Time

The preceding sections facilitate the prediction of the time required per timestep of a
simulation. Combining Eqs. (12) and (15) yields the entire time required for one timestep,
given by the sum of transport and collision times,

Tone= c3
v

c3
λ

[
cpTt + ct (cp − 1)cλ√

2

(
vt

v̄ + vt

)
Tc

]
n3σ 3V. (16)

This analysis does not depend on the type of grid used or the implementation of the transport
or collision phases. All particle transport algorithms must execute in time proportional to the

102 MARC A. RIEFFEL

number of timesteps and the number of particles, and all collision algorithms must execute
in time proportional to the number of collisions, thus yielding the same dependence on the
physical parametersn, σ , andV , and the constantscp, cl , ca, cv, ct , andcλ.

Memory Requirements

In addition to modeling the required execution time for convergence and averaging phases,
it is also important to predict the storage requirements for a simulation. The two primary
uses of memory are particles and cells. For small simulations, it is also important to consider
the amount ofoverheadmemory,M0, consumed by the application code and any constant-
sized data structures. If the memory required for a single particle isMp and the memory
required for a single cell isMc, the total memory required for a simulation,MDSMC, can be
written

MDSMC = M0+ MpN + McC = M0+ MpcpC + McC = M0+ (Mpcp + Mc)C. (17)

4. FLOW CONFIGURATIONS

This section considers the four possible flow configurations: steady-state internal, steady-
state external, unsteady internal, and unsteady external. The computational requirements
of each of these configurations have fundamentally different dependences on the physical
parameters. In order to provide a complete understanding of the complexity of the DSMC
method, it is essential to consider each configuration separately.

Steady-State Internal Flows

In order to compute a steady-state flow, the simulation is first run to convergence, and
then run for additional steps in order to sample and average macroscopic parameters. The
total simulation time is the sum of convergence and averaging times. The time required to
converge an internal-flow, steady-state simulation,K internal

steady , is the product of the time for
each timestep and the number of steps required. Using results from the previous section,
this yields

K internal
steady = ToneSconv= c3

vcLca

c3
λ

(
(cp − 1)Tc√

2
+ cpTt

ctcλ

)
n4σ 4V4/3. (18)

The duration of the averaging portion of a steady computation,Ainternal
steady , is governed by the

desired accuracy, or number of samples. Averaging time, for a desired number of samplesr ,
is the product of the time required for each timestep,Tone, and the number of steps required,
Ss,

Ainternal
steady = ToneSs = Tone

r

cp
. (19)

The averaging time can then be written

Ainternal
steady =

c3
v

c3
λ

[
Tt + Tc

ctcλ√
2

(
1− 1

cp

)(
vt

v̄ + vt

)]
n3σ 3Vr. (20)

In other words, the time required to obtain smooth results is proportional to the cube of
the density, the cube of the cross section, and the volume. It is also proportional to the the
desired number of samples, or the inverse square of the desired error.

REQUIREMENTS FOR DSMC SIMULATIONS 103

For a steady-state, fixed-volume simulation, the memory requirements from Eq. (17)
reduce to

M internal
steady = M0+ (Mpcp + Mc)

c3
v

c3
λ

n3σ 3V. (21)

The storage requirements for a simulation are therefore proportional to the cube of the
density, the cube of the cross section, and the volume of the simulated domain.

Steady-State External Flows

For certain classes of external flow problems, it is appropriate to adjust the size of the
computational domain according to the other physical parameters. As a first approximation,
it is sometimes possible to use a computational volume with length proportional to the mean
free path,λ, or volume proportional toλ3,

V = (cdλ)
3 = c3

d

n3σ 3
, (22)

wherecd is the number of mean free paths to be simulated. The convergence time for an
external flow can then be written

K external
steady =

c3
dc3
vcLca

c3
λ

(
(cp − 1)Tc√

2
+ cpTt

ctcλ

)
. (23)

In other words, the convergence time is not a function of cross section or density. Similarly,
the averaging time for an external flow,Aexternal

steady , for a desired number of samples,r , can
then be computed as

Aexternal
steady =

c3
vc

3
d

c3
λ

[
Tt + Tc

ctcλ√
2

(
1− 1

cp

)(
vt

v̄ + vt

)]
r. (24)

The memory requirements of a steady external simulation can be written

Mexternal
steady = M0+ c3

dc3
v

c3
λ

(Mpcp + Mc). (25)

Just as simulation time is not a function of cross section or density for this class of problems,
storage requirements are not functions of cross section or density. For some important
systems, it is possible to adjust the volume with the mean free path, but not in a directly
proportional manner. For these cases, the computational requirements may be estimated by
using the analysis of this section, together with the analysis of the previous section.

Unsteady Internal Flows

For an unsteady problem, the total simulated time is a specified parameter, not deter-
mined by convergence time. Consider an unsteady simulation of a time intervalTu, with a
characteristic oscillation timeτ . The ratioTu/τ is the number of periods to be simulated.
Because the flow is changing, it is not possible to average results over a large number of
steps. There are therefore two ways to obtain smooth results for unsteady flows. One is to

104 MARC A. RIEFFEL

choose a number of particles such that results averaged over a small number of steps will
be sufficiently smooth. The other approach is to run a number of simulations with a small
number of particles, but using a different random seed for each. The results from the differ-
ent simulations can then be averaged together to obtain smooth results. While both methods
require approximately the same amount of simulation time, the first method requires sig-
nificantly more memory. The following analysis assumes thatP separate simulations are
used, whereP= 1 corresponds to the first approach, andP> 1 corresponds to the second
approach.

For unsteady flows, results can only be averaged over a short period of time during which
the flow remains approximately unchanged. The number of particles per cell,cp, must be
chosen so that the desired number of samples can be obtained while the flow is unchanged.
It must be assumed that the flow is unchanged over some (small) fraction ofτ . Sampling
can then take place during a timecτ τ . The number of steps over which it is possible to
average is given by

Su = cτ τ

1t
. (26)

The number of samples,r , obtained withP separate simulations is the product of particles
and steps,

r = cpSu = cp P
cτ τ

1t
. (27)

Equation (27) can be solved to determine the minimum number of particles required per
cell, pmin,

pmin = r1t

cτ τ P
, (28)

which can be rewritten using (8)

pmin = ct

cτcλ

(
1

v̄ + vr

)
r

Pnστ
. (29)

The computational time required forP unsteady simulations is given by the product of the
time taken for each timestep,Tone, and the number of steps that must be simulated,Su. This,
in turn, is the ratio of the unsteady timeTu to the timestep1t ,

Ainternal
unsteady= Tone

Tu

1t
. (30)

Using previously computed values and the approximationcp− 1≈ cp, this yields

Ainternal
unsteady=

cpc3
v

ctc2
λ

[
Tt + Tc

ct

cλ

(
vr

v̄ + vt

)]
(v̄ + vt)n

4σ 4V Tu. (31)

Substituting the minimum number of particlespm for cp in (31) yields

Ainternal
unsteady=

pmc3
v

ctc2
λ

[
Tt + Tc

ct

cλ

(
vr

v̄ + vt

)]
(v̄ + vt)n

4σ 4V Tu (32)

= c3
v

ctc3
λcτ

[
Tt + Tc

ct

cλ

(
vr

v̄ + vt

)]
n3σ 3VrTu

τ
. (33)

REQUIREMENTS FOR DSMC SIMULATIONS 105

This shows that for unsteady simulations with a given oscillation periodτ , the computa-
tion time is proportional to the cube of both the density and the cross section, proportional
to the volume, the number of desired samples, and the simulated time, but inversely propor-
tional to the oscillation time. The cost of unsteady simulations therefore does not grow as
fast as the cost of constant-volume steady simulations, primarily for the reason that unsteady
simulations are not required to converge.

For typical values ofn, σ,V , andτ , however, the number of particles required for an
unsteady simulation is very much greater than the number required for a steady simulation.
The time and memory requirements of unsteady calculations are therefore substantially
greater than for steady calculations. In some cases, the initial conditions may be sufficiently
uncertain or complicated that a steady simulation must be converged to determine those
conditions before an unsteady computation can begin, further increasing the cost of unsteady
simulations.

In order to estimate the memory requirements for each unsteady internal flow simulation,
the previously computed value ofpm can be used in (21) to obtain

M internal
unsteady= M0+ c3

v

c3
λ

[
Mp

ct

cτcλ

(
1

v̄ + vr

)
n2σ 2r

τ P
+ Mcn

3σ 3

]
V. (34)

Unsteady External Flows

The simulation time for an unsteady external flow computation can be obtained by com-
bining (32) and (28), yielding

Ainternal
unsteady=

c3
vc

3
d

ctc3
λcτ

[
Tt + Tc

ct

cλ

(
vr

v̄ + vt

)]
rTu

τ
. (35)

Similarly, memory requirements can be obtained by reducing Eq. (34) to

Mexternal
unsteady= M0+ c3

dc3
v

c3
λ

[
Mp

ct

cτcλ

(
1

v̄ + vr

)
r

nστ
+ Mc

]
. (36)

Summary

The simulation execution time for the different configurations is summarized in Table I,
while the storage requirements for the different configurations are summarized in Table II.

TABLE I

Summary of Simulation Times for Different Configurations

Internal External

Steady
c3
v cL ca

c3
λ

(
(cp − 1)Tc√

2
+ cpTt

ct cλ

)
n4σ 4V4/3

c3
d

c3
vcL ca

c3
λ

(
(cp − 1)Tc√

2
+ cpTt

ct cλ

)
+ c3

v

c3
λ

[
Tt + Tc

ct cλ√
2

(
1− 1

cp

)(
vt

v̄+ vt

)]
n3σ 3Vr + c3

vc3
d

c3
λ

[
Tt + Tc

ct cλ√
2

(
1− 1

cp

)(
vt

v̄+ vt

)]
r

Unsteady
c3
v

ct c3
λ

cτ

[
Tt + Tc

ct
cλ

(
vr

v̄+ vt

)]
n3σ3VrTu

τ

c3
vc3

d
ct c3
λ

cτ

[
Tt + Tc

ct
cλ

(
vr

v̄+ vt

)]
rTu
τ

106 MARC A. RIEFFEL

TABLE II

Summary of Memory Requirements for Different Configurations

Internal External

Steady M0 + (Mpcp + Mc)
c3
v

c3
λ

n3σ 3V M0 + c3
d

c3
v

c3
λ

(Mpcp + Mc)

Unsteady M0 + c3
v

c3
λ

[
Mp

ct
cτ cλ

(
1

v̄+ vr

)
n2σ2r
τ
+ Mcn3σ 3

]
V M0 + c3

d
c3
v

c3
λ

[
Mp

ct
cτ cλ

(
1

v̄+ vr

)
r

nστ
+ Mc

]
5. PARAMETER ESTIMATION

This section considers the parameters required for predicting runtime and storage re-
quirements for DSMC simulations. These parameters can be grouped in two classes: those
that are implementation-dependent or architecture-dependent and those that are not. The
former can only be discussed in the context of a specific implementation, while the latter
should be common among all DSMC implementations.

General DSMC Parameters

In general, particles should not traverse more than about one cell per timestep, soct should
be less than one. Typical values are 0.3< ct < 1. The ratio of the cell size to the mean-free
path,cλ, should be less than one. Many implementations ensure that this constraint is met by
adaptively adjusting cell sizes appropriately. For such approaches, values forcλ are typically
between 0.3 and 1.

In order to understand the convergence time of a simulation, it is important to consider the
grid shape and boundary conditions. For a spherical grid with a uniform external boundary,
information at the boundaries will quickly propagate throughout the domain. On the other
hand, the simulation of a long curved tube with different boundary conditions at opposite
ends will require a long time to converge. In order to find typical values for the number
of acoustic periods required for convergence,ca, a series of simulations was conducted.
The duration of simulated time required for convergence was measured for different grids,
densities, simulated volumes, and boundary conditions. Typical values were found to be in
the range from 3 to 10.

The number of particles per cell,cp, must be large enough that a reasonable number
of collisions will take place in each cell. Using larger values ofcp also reduces statistical
scatter. On the other hand, both runtime and memory usage are proportional tocp. For
steady-state simulations,cp is typically chosen between 3 to 10. Some advanced statistical
techniques have been used to produce reasonably accurate results for as few as one particle
per cell [15].

The parametercv represents the ratio of the typical cell dimension to the cube root of
the cell volume and is primarily grid-dependent. For typical tetrahedral grid cells,cv ≈ 2,
while hexahedral cells have slightly smaller values ofcv. For skewed grid cells,cv can be
arbitrarily large. The ratio of the domain length to the cube root of the domain volume,
cL , is effectively the aspect ratio of the domain and may take values between 1 and 5 for
representative simulations.

The choice of the number of mean-free paths that must be simulated,cd, is largely
problem-specific, but representative simulations may use values between 10 and 1000.
Similarly, the choice ofcτ , the fraction of the oscillation period over which the flow is

REQUIREMENTS FOR DSMC SIMULATIONS 107

TABLE III

General DSMC Parameters

Parameter Description Typical values

ct Fraction of typical cell length traveled by 0.3–1
typical particle in one timestep

cλ Ratio of cell length to local mean free path, 0.3–1
or minimum local Knudsen number

ca Acoustic periods required for convergence 3–10

cp Ratio of particles to cells 3–10

cv Ratio of cell length to cube root of cell volume 1–5

cL Ratio of domain width to cube root of 1–5
domain volume

cd Number of mean free paths to be simulated 10–1000
for external flow

cτ Fraction of the oscillation period over which 0.01–0.3
samples can be averaged

considered unchanging, is problem-specific. For a sinusoidal oscillation, however,cτ = 0.1
is a reasonable approximation, providing 10 separate results for each oscillation period.

The implementation-independent parameters are summarized in Table III.

Implementation-Specific Parameters

The parametersTt , Tc,Mp, andMc, are both implementation- and architecture-specific.
For illustrative purposes, typical values were obtained for a DSMC implementation,Hawk,
designed for the simulation of neutral flow in plasma reactors, and for spacecraft reentry
calculations [27]. Other DSMC implementations will have different associated constants,
but they must obey the same dependences on the physical parameters.

Several tests were conducted on a Silicon Graphics Power Challenge with 75-MHz
R8000 processors. Test cases included neutral flow in plasma reactors, hypersonic reentry
flows, and uniform thermal relaxation tests. Implementation-specific parameters did not
vary significantly between the different test cases. In order to measure transport time,
simulations were conducted with the collision phase disabled. Similarly, collision time was
measured on simulations with particle transport disabled. A value ofcp= 10 was used, and
the measured values wereTt = 34µs andTc= 40.0 µs. Note that a larger value ofcp will
increase the number of particles being simulated for the same amount of per-cell overhead
and result in smaller values forTt andTc. The variable soft sphere (VSS) collision model
was employed. Using a simpler model, such as variable hard sphere (VHS) or hard sphere
(HS) simply reduces the amount of computation required per collision,Tc.

The overhead memory,M0, was estimated forHawkby running a simulation with only
12 cells and with no particles. On the SGI Power Challenge, this value was found to
be approximatelyM0= 2.97 MB. The memory usage per particle has a lower bound of
six floating point values, three for position and three for velocity (in three dimensions).
Most implementations, however, use additional storage space for storing additional per-
particle data structures that help to reduce runtime. The particle memory usage inHawk
was estimated by running simulations with varying numbers of particles and recording the
memory usage reported by the operating system, then subtracting the overhead memory

108 MARC A. RIEFFEL

TABLE IV

Implementation-Specific Parameters

Parameter Description Typical values

Tt Time required to move one particle for one timestep 34µs
Tc Time required to perform one collision 40.0µs
M0 Memory required for overhead 2.96 MB
Mp Memory required for a particle 55 B
Mc Memory required for a cell 1482 B

M0 and dividing by the number of particles. This yielded an an approximate value,Mp=
55 bytes. It must also be noted that simulations using more sophisticated chemistry models
may require additional memory to store, for example, internal energy or species information.

Per-cell memory requirements are likely to vary more between DSMC implementations.
In Hawk, each cell stores several values for unstructured grid information, a pointer to a
linked list of particles, local information used for collisions, and macroscopic parameter
information. Many of these data structures are irregular and dynamic in nature, with sizes
that depend on the nature of the problem and may even change during a computation. For
the relatively simple computations discussed here, cell sizes were typically aroundMc=
1482 bytes.

Table IV summarizes the implementation-dependent parameters.

6. PREDICTIVE MODELING

In order to illustrate the application of the model to the prediction of actual simulation
requirements, a series of internal flow simulations are considered. In order to assess the
accuracy of the performance prediction model,Hawksimulations were conducted on five
box grids, each with a different number of cells. Execution time per timestep and memory
usage were measured. The execution time per timestep was predicted using Eq. (16) and
the parameters in Section 5.

Figure 3a plots predicted and measured step times as functions of the quantityn3σ 3V .
For each simulation, the predicted step time is within 8% of the measured step time. The
differences are largest for the small grids (low values ofn3σ 3V), which can be attributed to
the effects of computational overhead and setup time. The linear dependence of step time
onn3σ 3V is clearly demonstrated by this experiment.

Figure 3b shows the predicted and measured memory requirements for the same simu-
lations. For the larger simulations, memory usage is proportional to the quantityn3σ 3V ,
while for small simulations, the overhead memory,M0, is the dominant term. These results
show excellent agreement between predictions and measurements. The difference between
predictions and measurements is consistently less than 4%.

In addition to the internal flow configurations considered in this section, the authors
have conducted external flow simulations, including hypersonic reentry calculations with
gas mixtures and internal degrees of freedom, that are consistent with the performance
prediction model. The model has also been applied by Ivanovet al. to simulations of high-
altitude capsule aerodynamics with real gas effects, using a completely different DSMC
implementation [19]. Using suitable implementation-specific parameters, their data agree
well with the model [20].

REQUIREMENTS FOR DSMC SIMULATIONS 109

FIG. 3. Predicted and measured step time (left) and memory usage (right) as functions of physical parameters.

7. LARGE-SCALE SIMULATIONS

While the preceding experiments were performed on simple box grids, the analysis still
holds for complex three-dimensional geometries. As an example of realistic simulations
of industrial relevance, argon simulations of a plasma reactor, the Gaseous Electronics
Conference (GEC) reference cell, were considered. A picture of this reactor, and a typi-
cal computational grid used to model it, are shown in Fig. 4. This reactor has a complex

FIG. 4. The Gaseous Electronics Conference (GEC) reference cell reactor (left) and a computational grid
used to represent it (right).

REQUIREMENTS FOR DSMC SIMULATIONS 111

TABLE V

GEC Simulation Predictions

Press. Press. Density Tone Tconv Mem
(Pa) (m Torr) (m−3) Cells Particles (s) (s) (B)

0.291 2.19 7.0× 1019 1.4× 105 1.4× 106 51.7 4.0× 103 2.88× 108

2.66 20 6.4× 1020 1.1× 108 1.1× 109 3.9× 104 2.8× 107 2.17× 1011

6.65 50 1.61× 1021 1.68× 109 1.68× 1010 6.2× 105 1.1× 109 3.42× 1012

13.3 100 3.21× 1021 1.3× 1010 1.3× 1011 4.9× 106 1.8× 1010 2.71× 1013

three-dimensional geometry with a volume of 0.013 m2 and typically operates at a temper-
ature of 300 K.

Using the model and constants developed above, runtime and storage requirements can
be predicted for simulations of the GEC cell at several densities, or pressures. Table V lists
predictions for the number of cells, number of particles, timestep duration, convergence
time, and memory usage, for three different operating pressures. These values were obtained
using the machine-specific parameters for the 75-MHz R8000 SGI Power Challenge.

In order to assess the applicability of the model to realistic three-dimensional geometries,
the first case, at 0.291 Pa, was configured and simulated on an SGI Power Challenge. Using
the model and parameters above, memory usage for this simulation was predicted to within
3%. Because the model does not take into account the additional cost of moving particles
in the high grid-density regions, the model underpredicted the timestep time by about 25%.
In general, the model can be expected to provide an accurate estimate of memory usage,
and a reasonable lower bound for simulation time, for realistic simulations.

For the other simulations listed in Table V, the higher operating pressure results in vastly
larger computational costs, both in terms of simulation time and storage requirements.
For a simulation at 2.66 Pa to be conducted to the same accuracy, 22 GB of RAM would
be required, and the convergence portion of the simulation would take 327 days. With a
512-processor machine, assuming 70% utilization, this simulation could be completed in
about 22 h, using 43 MB per processor.

A simulation at 6.65 Pa would require 35 years on a single-processor machine with 3 TB
RAM. On a machine with 1024 R8000 processors with 3 GB RAM each, such a simulation
could be completed in 18 days at 70% utilization. For the 13.3 Pa case, a single SGI Power
Challenge would require 27 TB of RAM, and convergence would take 570 years. On a 8192-
processor Power Challenge, assuming 70% utilization, this simulation might be possible in
36 days, using 3.3 GB RAM per processor.

8. CONCLUSION

The results of this work show that the runtime and memory requirements can be accurately
predicted on the basis of physical properties and machine-specific parameters. The algorithm
is fundamentally polynomial in the physical parameters, and the degree of the polynomial
can range from 0 to 4. When considering the applicability of the DSMC method to a
specific problem, it is essential to consider the runtime and storage requirements for the
simulation. For certain high-density or large-volume problems, these requirements may be
prohibitive. By comparing the requirements of the DSMC method with the requirements of
other methods, it is possible to determine the best approach for each specific problem. It is

112 MARC A. RIEFFEL

also possible to predict how chances in physical parameters will affect runtime and storage
requirements and, thereby, to determine bounds on the class of problems that can be solved
will the DSMC technique, given finite computational resources.

ACKNOWLEDGMENTS

The information contained herein does not necessarily reflect the position or policy of the government of the
United States, and no official endorsement should be inferred. The author would like to gratefully acknowledge the
contributions of Maura Benton, Evan Cohn, Sergey Gimelshein, Ross Harvey, Mikhail Ivanov, Vincent McKoy,
Bradley Nelson, Sadasivan Shankar, Stephen Taylor, and Jerrell Watts.

REFERENCES

1. J. Austin and D. Goldstein, Direct numerical simulation of low-density atmospheric flow on io,Bull. Am.
Phys. Soc. Ser. II39(9) (1994).

2. T. Bartel, Low density gas modeling in the microelectronics industry, inRarefied Gas Dynamics 19, Vol. 1
(Oxford Univ. Press, Oxford, 1995).

3. G. Bird, Breakdown of translational and rotational equilibrium in gaseous expansions,AIAA J.8(11) (1970).

4. G. Bird, Direct simulation of the Boltzmann equation,Phys. Fluids13(11) (1970).

5. G. Bird,Molecular Gas Dynamics(Oxford Univ. Press, Oxford, 1976).

6. G. Bird, Simulation of multi-dimensional and chemically reacting flows, inRarefied Gas Dynamics(Oxford
Univ. Press, Oxford, 1979).

7. G. Bird,Molecular Gas Dynamics and the Direct Simulation of Gas Flows(Clarendon Press, Oxford, 1994).

8. J. F. Bourgat, P. Le Tallec, and M. D. Tidriri, Coupling Boltzmann and Navier–Stokes equations by friction,
J. Comput. Phys.127, 227 (1996).

9. I. Boyd, Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method,
Phys. Fluids3(7) (1991).

10. I. Boyd, G. Pham-Van-Diep, and E. Muntz, Monte Carlo computation of nonequilibrium flow in a hypersonic
iodine wind tunnel,AIAA J.32(5) (1994).

11. C. Cercignani,Theory and Application of the Boltzmann Equation(Scottish Academic Press, Edinburgh/
London, 1975).

12. S. Chapman and T. G. Cowling,The Mathematical Theory of Nonuniform Gases(Cambridge Univ. Press,
New York, 1952).

13. S. Gimelshein, G. Markelov, and M. Rieffel,Collision Models in the Hawk DSMC Implementation, Caltech
Technical Report CS-96-16, 1996.

14. J. K. Haviland and M. L. Levin, Application of Monte Carlo method to heat transfer in rarefied gases,Phys.
Fluids5, 1399 (1962).

15. M. S. Ivanov and S. V. Rogasinsky, Theoretical analysis of traditional and modern schemes of the DSMC
method, invited paper inRarefied Gas Dynamics, 1991.

16. M. Ivanov, S. Antonov, S. Gimelshein, and A. Kashkovsky, Computational tools for rarefied aerodynamics,
in Proc. XVII Intern. Symp. on Rarefied Gas Dynamics, Vancouver, Canada, 1994.

17. M. Ivanov, S. Gimelshein, and A. Beylich, Hysteresis effect in stationary reflection of shock waves,Phys.
Fluids7(4) (1995).

18. M. Ivanov and S. Gimelshein, Computational hypersonic rarefied flows,Annu. Rev. Fluid Mech.30, 469
(1998).

19. M. Ivanov, G. Markelov, S. Gimelshein, L. Mishina, A. Krylov, and N. Grechko, High-altitude capsule
aerodynamics with real gas effects,J. Spacecraft Rockets35(1) (1998).

20. M. Ivanov and S. Gimelshein, private communication, 1998.

21. M. N. Kogan,Rarefied Gas Dynamics(Plenum, New York, 1969).

REQUIREMENTS FOR DSMC SIMULATIONS 113

22. K. Koura and H. Matsumoto, Variable soft sphere molecular model for air species,Phys. Fluids4(5) (1992).

23. P. Marriott and T. Bartel, Comparisons of DSMC flow field predictions using different models for energy
exchange and chemical reaction probability, inRarefied Gas Dynamics 19, Vol. 1 (Oxford Univ. Press, Oxford,
1995).

24. E. P. Muntz, Rarefied gas dynamics,Ann. Rev. Fluid Mech.21, 387 (1989).

25. K. Nanbu and Y. Watanabe, Relaxation rates of inverse-power and rigid-sphere molecules,Rep. Ins. High
Speed Mach.43, 334 (1981).

26. K. Nanbu and S. Uchida, Application of particle simulation to plasma processing, inRarefied Gas Dynamics
19, Vol. 1 (Oxford Univ. Press, Oxford, 1995).

27. M. Rieffel, Concurrent simulations of plasma reactors for VLSI manufacturing, Masters Thesis, Caltech
CS-95-012, 1995.

28. M. Rieffel, S. Taylor, and J. Watts, Concurrent simulation of plasma reactors, inProceedings of High Perfor-
mance Computing ’97, p. 163.

29. M. Rieffel, S. Taylor, and S. Shankar, Reactor simulations for semiconductor manufacturing, inProceedings
of High Performance Computing ’98.

30. M. Rieffel, Performance modeling for concurrent particle simulations, Doctoral thesis, Computer Science
Department, Caltech, 1998.

31. E. M. Shakhov,Method of Studying the Rarefied Gas Motion(Nauka, Moscow, 1974). [Russian]

32. S. Taylor, J. Watts, M. Rieffel, and M. Palmer, The concurrent graph: Basic technology for irregular problems,
IEEE Parallel Distrib. Technol.4(2) (1996).

33. D. Wadsworth, Development and application of a three-dimensional parallel direct simulation Monte Carlo
code for materials processing problems, inParallel CFD ’95, Pasadena.

34. X. Zhong and K. Koura, Comparison of solutions of the Burnett equations, Navier–Stokes equations, and
DSMC for Couette flow, inRarefied Gas Dynamics 19, Vol. 1 (Oxford Univ. Press, Oxford, 1995).

	1. INTRODUCTION
	2. NUMERICAL METHOD
	FIG. 1.
	FIG. 2.

	3. COMPUTATIONAL COMPLEXITY ANALYSIS
	4. FLOW CONFIGURATIONS
	TABLE I
	TABLE II

	5. PARAMETER ESTIMATION
	TABLE III
	TABLE IV

	6. PREDICTIVE MODELING
	FIG. 3.

	7. LARGE-SCALE SIMULATIONS
	FIG. 4.
	TABLE V

	8. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

